

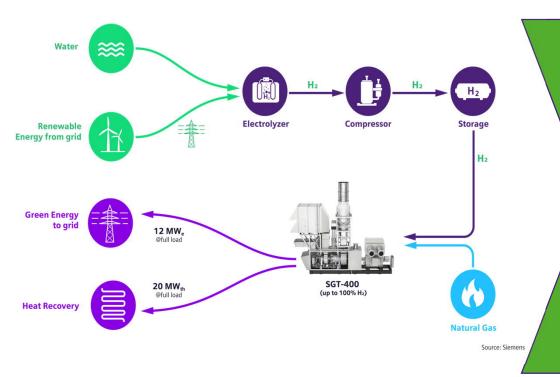
HYFLEXPOWER Hydrogen Project

Power-H₂-Power Pilot CO₂-Free Green Energy with H₂ GT

Siemens Energy

HYFLEXPOWER Power-H2-Power Project

World-first demonstration of a power-to-H₂-to-power path for CO₂-free power generation pilot including an advanced H₂ gas turbine


- Decarbonizing papermill by modernizing combined heat and power plant in Saillat-sur-Vienne, France.
- Siemens Energy led consortium with project volume of 15.2
 M€
- Project Start: May 1st, 2020 Duration: 4 years
- Partners include: Engie Solutions, Centrax, Arttic, German Aerospace Center, Universities: Duisburg-Essen, Lund-Sweden, University College London, National Technical University of Athens

Customer, academia and OEM formed strong consortium demonstrating CO2-free power generation

EU Framework Horizon 2020: HYFLEXPOWER

Project Concept

Smurfit Kappa plant in Saillat-sur-Vienne, France: Pilot Cogeneration SGT-400 Plant

- Engie: Develop advanced plant concept with H₂ storage and supply
- **Siemens**: Development H₂ SGT-400; Electrolyser
- Centrax: H₂ gas turbine package upgrade
- Academia: DLR, Universities UCL, Duisburg-Essen and Lund to support H2 GT technology development
- NTUA: Economic, environmental social assessments
- Arttic: Support in PM and communication activities
- **EU:** Significant funding ~70% from EU Framework H2020

Significant EU funding for world-first power-H₂-power pilot with advanced H₂ GT

HYFLEXPOWER H2 Project

Key Milestones - Expected Results & Impact

2021

Installation of the H₂
 production, storage & supply facility at site

2022

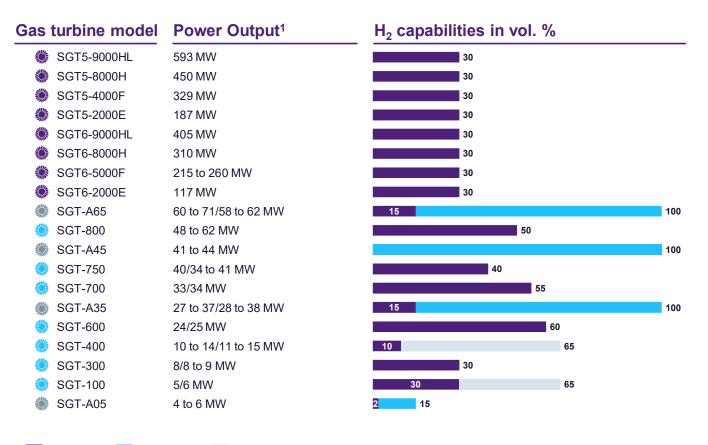
Initial demonstration of advanced plant concept with NG/ H₂ mixtures

2023

 Pilot up to 100% H₂ for carbon-free energy production from stored excess renewable energy (CO2 saving 65,000t/yr.)

Expected Results & Impacts

- Industrial scale power- H₂-power solution pilot
 - Importance of H₂ as long-term energy storage technology on high renewable grid
 - Decoupling renewable energy generation from electricity demand and enabling additional revenue stream
 - Utilization of existing assets to produce green energy & heat
- Validation of SGT-400 dry low emissions (DLE) high-H₂ technology with up to 100% H₂
- Economic, environmental & social assessments for business case evaluation, carbon footprint, & policy recommendations


HYFLEXPOWER has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 884229

4

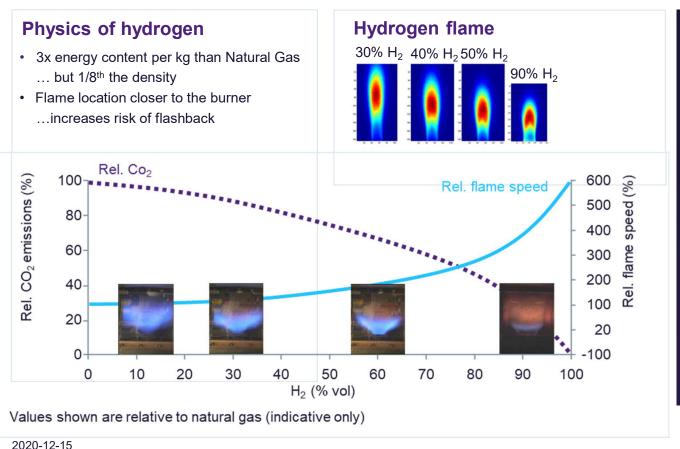
Siemens Hydrogen Gas Turbines for our sustainable future

Values shown are indicative for new unit applications and depend on local conditions and requirements. Some operating restrictions/special hardware and package modifications may apply.

Technology Gap exists in providing 100% H2 fuel capability with a Dry **Low Emissions** combustion system

DI F burner WI F burner Diffusion burner with unabated NOx emissions

Industrial gas turbines Heavy-duty gas turbines 1 ISO, Base Load, Natural Gas; Version 3.4, July 2020


Aeroderivative gas turbines

DLE: Dry Low Emissions WLE: Wet Low Emissions

Zero Emissions via Hydrogen Combustion Some physics to be handled in the system

Differences of hydrogen and natural gas as a fuel in gas turbines

Challenges

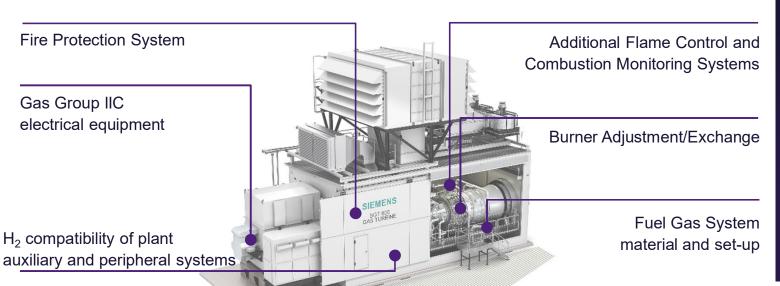
- Higher diffusivity requires re-certification of sealing. Upgrade to stainless steel materials ...
- Lower volumetric energy content requires larger flows to be handled by fuel system
- **Higher reactivity** pushes flame towards burner and increases risk of explosion or flashback
- Higher flame temperature can lead to local hotspots if imperfectly mixed and thus increased NOx emissions

I Amos | Portfolio Management Unrestricted © Siemens Energy, 2020

Siemens Solution for different H₂ levels Expected changes

Differences in Design between "standard" and H₂-Gasturbines:

System/P	Procedures	
Burners an	nd combustion chamber	
Combustio	n monitoring system	
Fuel supply	y system	
Control/pro	tection systems	
O&M Proce	edures	


H ₂ Volume Impact on Package				
0%	10% – 30%1	50% - 70%1	100%	
	10% – 30%1	50% – 70%1		
No change	Modified burne may be require		esign	
n.a.	n.a.	n.a.		
No change	Ensure all con Stainless Stee	·	increase	
No change	Additional gas		area electrical Gas Group IIC	
No change	Leak check of system after mails inspections	•		
No modifications needed	Smaller mo	odifications quired Modification	ons	

¹ Percentage varies from GT model to model and emission limit requirements

High Hydrogen Modifications for Industrial Gas Turbines

Main systems requiring modification when upgrading to higher H₂ content

Consequences and solution

- Project specific evaluation and decision on required modifications
- Power output control to ensure compliant NOx emission levels
- Conventional/non-H₂ fuels may be required for start-up and shutdown
- Re-certification with respective authorities might be required

In HYFLEXPOWER;

Centrax will modify the package of the installed unit Siemens Energy will develop the new combustor technology and controls for retrofit.

Contact

Wim Van Den Mosselaer

Siemens Energy S.A./N.V.

Guido Gezellestraat 125

1654 Beersel, Belgium

Mobile: +32 485910539

wim.van_den_mosselaer@siemens-energy.com